Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37643018

RESUMO

The role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 ß-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells. Additionally, we developed a genetically engineered mouse (GEM) model with transgenic expression of ST6GAL1 in the pancreas and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D had greatly accelerated PDAC progression compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1's role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We verified ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Receptores ErbB/genética , Metaplasia/patologia , Sialiltransferases/genética , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD
2.
Mol Metab ; 76: 101785, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536498

RESUMO

OBJECTIVE: Transcriptional complex activity drives the development and function of pancreatic islet cells to allow for proper glucose regulation. Prior studies from our lab and others highlighted that the LIM-homeodomain transcription factor (TF), Islet-1 (Isl1), and its interacting co-regulator, Ldb1, are vital effectors of developing and adult ß-cells. We further found that a member of the Single Stranded DNA-Binding Protein (SSBP) co-regulator family, SSBP3, interacts with Isl1 and Ldb1 in ß-cells and primary islets (mouse and human) to impact ß-cell target genes MafA and Glp1R in vitro. Members of the SSBP family stabilize TF complexes by binding directly to Ldb1 and protecting the complex from ubiquitin-mediated turnover. In this study, we hypothesized that SSBP3 has critical roles in pancreatic islet cell function in vivo, similar to the Isl1::Ldb1 complex. METHODS: We first developed a novel SSBP3 LoxP allele mouse line, where Cre-mediated recombination imparts a predicted early protein termination. We bred this mouse with constitutive Cre lines (Pdx1- and Pax6-driven) to recombine SSBP3 in the developing pancreas and islet (SSBP3ΔPanc and SSBP3ΔIslet), respectively. We assessed glucose tolerance and used immunofluorescence to detect changes in islet cell abundance and markers of ß-cell identity and function. Using an inducible Cre system, we also deleted SSBP3 in the adult ß-cell, a model termed SSBP3Δß-cell. We measured glucose tolerance as well as glucose-stimulated insulin secretion (GSIS), both in vivo and in isolated islets in vitro. Using islets from control and SSBP3Δß-cell we conducted RNA-Seq and compared our results to published datasets for similar ß-cell specific Ldb1 and Isl1 knockouts to identify commonly regulated target genes. RESULTS: SSBP3ΔPanc and SSBP3ΔIslet neonates present with hyperglycemia. SSBP3ΔIslet mice are glucose intolerant by P21 and exhibit a reduction of ß-cell maturity markers MafA, Pdx1, and UCN3. We observe disruptions in islet cell architecture with an increase in glucagon+ α-cells and ghrelin+ ε-cells at P10. Inducible loss of ß-cell SSBP3 in SSBP3Δß-cell causes hyperglycemia, glucose intolerance, and reduced GSIS. Transcriptomic analysis of 14-week-old SSBP3Δß-cell islets revealed a decrease in ß-cell function gene expression (Ins, MafA, Ucn3), increased stress and dedifferentiation markers (Neurogenin-3, Aldh1a3, Gastrin), and shared differentially expressed genes between SSBP3, Ldb1, and Isl1 in adult ß-cells. CONCLUSIONS: SSBP3 drives proper islet identity and function, where its loss causes altered islet-cell abundance and glucose homeostasis. ß-Cell SSBP3 is required for GSIS and glucose homeostasis, at least partially through shared regulation of Ldb1 and Isl1 target genes.


Assuntos
Hiperglicemia , Ilhotas Pancreáticas , Adulto , Camundongos , Humanos , Animais , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Homeostase , Proteínas de Ligação a DNA/metabolismo , Proteínas com Domínio LIM/metabolismo
3.
J Biol Chem ; 294(31): 11728-11740, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31186351

RESUMO

Diabetes is characterized by a loss of ß-cell mass, and a greater understanding of the transcriptional mechanisms governing ß-cell function is required for future therapies. Previously, we reported that a complex of the Islet-1 (Isl1) transcription factor and the co-regulator single-stranded DNA-binding protein 3 (SSBP3) regulates the genes necessary for ß-cell function, but few proteins are known to interact with this complex in ß-cells. To identify additional components, here we performed SSBP3 reverse-cross-linked immunoprecipitation (ReCLIP)- and MS-based experiments with mouse ß-cell extracts and compared the results with those from our previous Isl1 ReCLIP study. Our analysis identified the E3 ubiquitin ligases ring finger protein 20 (RNF20) and RNF40, factors that in nonpancreatic cells regulate transcription through imparting monoubiquitin marks on histone H2B (H2Bub1), a precursor to histone H3 lysine 4 trimethylation (H3K4me3). We hypothesized that RNF20 and RNF40 regulate similar genes as those regulated by Isl1 and SSBP3 and are important for ß-cell function. We observed that Rnf20 and Rnf40 depletion reduces ß-cell H2Bub1 marks and uncovered several target genes, including glucose transporter 2 (Glut2), MAF BZIP transcription factor A (MafA), and uncoupling protein 2 (Ucp2). Strikingly, we also observed that Isl1 and SSBP3 depletion reduces H2Bub1 and H3K4me3 marks, suggesting that they have epigenetic roles. We noted that the RNF complex is required for glucose-stimulated insulin secretion and normal mitochondrial reactive oxygen species levels. These findings indicate that RNF20 and RNF40 regulate ß-cell gene expression and insulin secretion and establish a link between Isl1 complexes and global cellular epigenetics.


Assuntos
Proteínas com Domínio LIM/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Histonas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas com Domínio LIM/química , Proteínas com Homeodomínio LIM/antagonistas & inibidores , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Ligação Proteica , Domínios Proteicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...